Portable Performance in Real Applications
Using Generated Code

DOE Centers of Excellence Meeting

David Richards,
Pei-Hung Lin, Prashant Rawat, Louis Noel Pouchet,
Saday Sadayappan, Dan Quinlan

April 21, 2016

LLNL-PRES-690278 Bl Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore i
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Natlonal Laboratory




Qutline of the D-TEC Flow

B Application Abstractions
Front End — Library Abstractions

DSL Specifications

\

Multi-level memory hierarchy optimization
Higher-order stencil optimization
Data-flow analysis/optimizations
Polyhedral Optimizations
Optimizer — Loop Optimization

Vectorization
Parallelization
Single and Multi-GPU optimizations
Autotuning based optimization selection

Generation Race-Free Verification

= o L L w
[}_ p U.S. DEPARTMENT OF Office of ftﬂ.‘: B Ng\thilcgﬁg??_at%?g{:)or; e ey
Gy ENERGY scence SRICE == O

LLNL PRES-690278



5. Demonstrate how to extend for non-trivial app. evolution

Higher Order Stencils in ROSE/PolyOpt

« Significance / Impact
— High-order stencils arise in high-accuracy numerical solution approaches for PDEs

— Chombo and Overture applications make use of high-order stencils, but current
implementations pay a high compute cost for increased stencil order

— A new domain-specific optimization has enabled significantly enhanced performance for high-
order stencils, on multi-core processors

— Implication: more accurate solution schemes using high-order stencils can be run in about the
same time as one with lower order stencils and lower accuracy

* Generates hlgh-pelfformance High-Order Stencil Performance with
codes of > 10,000 lines Domain-Specific Optimizations
automatically from
< 20 lines DSL description

800

700 T

600 T—

500 1 —
400 -
300 -
200 -
100 -

Stencil performance (MegaStencil/s)

2D box 2D box 2D box 2D box 2D box 3D box 3D box 3D diam.
9 pts 25 pts 49 pts 81 pts 121 pts 27 pts 125 pts 19 pts

i Reference (ICC) & DSL Optimized (ICC)

" BRICE =

D Tes Lawrence Livermore
£ "% U.S. DEPARTMENT OF Offlce Of ;‘“z] 1.7172 LA National Laboratory W/\SHINGION III

ENERGY Science

LLNL-PRES-690278

D-TEC

=_ _= oRrREGON



Cardioid and SW4

Cardiac Electrophysiology Seismic Wave Propagation
15t Order 19 point stencil 4th order 125 point stencil

Both codes use structured grids and handle anisotropic inhomogeneous materials.

NYSE

LLNL-PRES-690278 National Nuclear Security Administration



Generated GPU Code for Cardioid

A variable coefficient stencil in the diffusion code

— Order-1 bandwidth-bound stencil on a 102 x 37 x 17 domain
— Original code with OMP (4 threads) achieves 3.76 Gflop/s

Efficient GPU code can be generated by a code generator

— With sufficiently high occupancy, and no register spills
— A naive generated code achieves 34.50 Gflop/s

Roofline Model Analysis:
— Operational intensity (ops/byte) : 0.18
— Maximum achievable Gflop/s: peak bandwidth * 0.18 = 51.91 Gflop/s

Performance Analysis:

— Generated code achieves 66.63% of the “roofline” maximum
— Achieved global memory load efficiency: 76.2%

— Achieved global memory store efficiency: 86.21

NIYSH s
és«mun’maumm;s:ﬁ.

LLNL-PRES-690278 National Nucl



SWA4 Kernel

= Simplest kernel from rhs4th3fort routine in SW4
= Complex high-order stencil
= Five 3D input arrays, three 3D output arrays

= Very high arithmetic intensity:
over 650 floating-point operations => over 10 FLOPs/byte

= Very different from Jacobi stencils frequently evaluated for
code generation

' (/“‘

Ay 6
9

National Nuclear Security Administration



SW4 stencil code

for( k= k1; k <= k2 ; k++ )

{
for( j
{

=jfirst+2; j <= jlast-2 ; j++ )

for( i=ifirst+2; i <= ilast-2 ; i++ )

{

/* from inner_loop_4a, 28x3 = 84 ops */

muxl = mu(i-1,j,k)*strx(i-1)-
tfx(mu(i,j,k)kstrx(i)+mu(i-2,j,k)*strx(i-2));

mux2 = mu(i-2,j,k)*strx(i-2)+mu(i+1,j,k)*strx(i+1)+
3x(mu(i,j,k)*strx(i)+mu(i-1,j,k)*strx(i-1));

mux3 = mu(i-1,j,k)*strx(i-1)+mu(i+2,j,k)*strx(i+2)+
3x(mu(i+l,j,k)*kstrx(i+1l)+mu(i,j,k)*strx(i));

mux4 = mu(i+l,j,k)*xstrx(i+l)-
tfx(mu(i,j,k)*kstrx(i)+mu(i+2,j,k)*strx(i+2));

muyl = mu(i,j-1,k)*stry(j-1)-
tfx(mu(i,j,k)*stry(j)+mu(i,j-2,k)*stry(j-2));
muy2 = mu(i,j-2,k)*xstry(j-2)+mu(i,j+1,k)*stry(j+1)+
3k(mu(i,j,k)*stry(j)+mu(i,j-1,k)*stry(j-1));
muy3 = mu(i,j-1,k)*stry(j-1)+mu(i,j+2,k)*stry(j+2)+
3k(mu(i,j+1,k)*stry(j+1)+mu(i,j, k)*stry(j));
muy4 = mu(i,j+1,k)*stry(j+1)-
tfx(mu(i,j,k)*stry(j)+mu(i, j+2,Kk)*stry(j+2));

muzl = mu(i,j,k-1)xstrz(k-1)-
tfx(mu(i,j,k)*kstrz(k)+mu(i,j,k-2)*strz(k-2));

muz2 = mu(i,j,k-2)*xstrz(k-2)+mu(i,j,k+1)*strz(k+1)+
3x(mu(i,j,k)*strz(k)+mu(i,j, k-1)*strz(k-1));

A4

Over 200
lines of
similar code

LLNL-PRES-690278

National Nuclear Security Admi

74y

7
‘-.%‘ 7

Administration



Sw4 Haswell performance with index reordering

baseline SW4

~25% peak -y Orig C
Orig Fortran
New C
New Fortran

)

Better
Performance

25 32 64 96 128 160 192 224 256 288 320
Problem Size

el
NAYSE -
LLNL-PRES-690278 National Nuclear Security Administration



SW4 performance with various padding added

adding in SW4

~25% peak|

)

Better
Performance

64 128 192 256 320
Problem Size

(24
NIYSE o
)
National Nuclear Security Administration

LLNL-PRES-690278



SW4 CPU Performance Observations

= The fortran vs C fight is fundamentally uninteresting to me
= Intel compiler does an impressive job with naive code

= Original fortran version out performs C
— C compiler misses a vectorization opportunity found by fortran compiler
— If you don’t want to think, use fortran
— Or, complain to your C compiler vendor

= Fortan and C performance are equal with trivial index swap
— May be better or worse than original fortran depending on problem size
— Performance dependence on problem size can be fixed with padding
— You can get better performance if you think

NYSH 10
ésa:un‘q’Adm[m‘s:ﬁ

LLNL-PRES-690278 National Nucl



Stencil Optimization for GPUS

= Recent research on stencil optimization has focused on “time-

tiling” and kernel fusion
— Reduce data movement to/from main memory for bandwidth limited
codes

= Higher-order stencils have higher arithmetic intensity
— Conventional wisdoms says this should be easier to optimize
— In practice, data re-use must be balanced with register pressure

= |nitial generated code for SW4 exhibited very poor performance
— HW counter analysis revealed massive register spilling
— Suggested use of opposite approach to typical kernel fusion optimization

for stencils: kernel fission
» Kernel fission reduces the register pressure per kernel
e But reduces data reuse and increases overall data traffic

2
L
A oy 11
National Nuclear Security Administration

LLNL-PRES-690278



Kernel Fission and Fusion

Fission:
o Put each statement in a separate kernel

« Rewrite stencil statements as accumulations (statement splitting)
e A sub-statement reads from minimal number of inputs
C = stencil (A, B),—== C = stencil (A); C += stencil (B);
o If possible, split a sub-statement into stencils along only one dimension
C = stencil (Aij); —p C=stencil (A;); C+=stencil (Aj);

Fusion:
« Regroup accumulations across kernels to increase reuse and shorten live ranges

« Group statements with stencil along the same dimension together
+ Statements with high reuse are lexicographically closer

o Fuse kernels with no reuse to minimize data movement without increasing
register pressure
+ Group stencils along orthogonal dimensions together (no/low reuse implies low
probability of register spills)

' (v H
s
>
N A Sﬁqﬂ 12
National Nuclear Security Administration

LLNL-PRES-690278



GPU Performance of SW4 Kernel

SW4

[T
a o

Better
Percentage peak DP achieved

F =Y

[ S G
o N

M Original

M SplitKernels

O N A O ®
[

20 50 70 100 150 200 250 300 350 400 450 500
Problem size

Preliminary results for kernel from double precision (DP) rhs4th3fort routine of SW4

Compiled on Tesla K40c with 64 registers per thread
Spills for Original kernel: 1416 bytes spill stores, 1712 bytes spill loads

Split-Kernel contains 3 kernels, each using 64 registers per thread: O Register spills

o)
NS
LLNL-PRES-690278 Nati rity Administration

/ational Nuclear Secur



On Further Performance Improvement

= Kernel fission solves the register spill problem but...
— Performance is only about 15% of roofline bound
— Global memory access is not the bottleneck
— Limiting factor seems latency/bandwidth of L1/L2 cache

= Challenges for SW4 stencils on GPUs
— SW4 stencils are much more complex than single-array high-order
stencils optimized previously
— And this is the simplest stencil in SW4
— Smaller per-thread capacity of L1/L2 caches on GPU compared to CPU
— Cache performance worse on GPU compared to CPU

= Work is ongoing

NOSE
ésa:un‘q’ Admm;;r;:%

LLNL-PRES-690278 National Nucl



Summary

= Code generation is a big part of many portability solutions
— Raja, Kokkos, OpenMP, etc.
— Best techniques and practices are still shaking out
— Unreasonable to put the whole demand on vendor compiler

= Not all higher-order stencils are created equal
— Need more cooperation between application developers and tool chain
developers/researchers

= More registers would probably help

2
L
A oy 15
National Nuclear Security Administration

LLNL-PRES-690278



B Lawrence Livermore
National Laboratory




